Enzimas de una bacteria intestinal ayudan a producir sangre universalmente compatible

redacción LA VOZ

SOCIEDAD

Emilio Naranjo

Tienen la capacidad de cambiar los glóbulos rojos de los grupos A y B a otros del grupo O, el que poseen los donantes universales

29 abr 2024 . Actualizado a las 19:08 h.

Un grupo de investigadores ha descubierto que las enzimas presentes en una bacteria intestinal, Akkermansia muciniphila, son capaces de convertir los glóbulos rojos de los grupos sanguíneos A y B en los de cero negativo (0-), universalmente compatible, lo que facilitaría la disponibilidad de sangre para las transfusiones.

Así lo pone de manifiesto un hallazgo llevado a cabo por investigadores de universidades danesas y suecas que recoge este lunes en la revista Nature Microbiology. Cada año, recuerdan los investigadores, se realizan más de 118 millones de donaciones de sangre para satisfacer la demanda mundial de transfusiones sanguíneas gracias a las cuales se salvan millones de vidas.

La concordancia de los grupos sanguíneos de los glóbulos rojos del donante y del receptor es fundamental para evitar reacciones hemolíticas potencialmente mortales. Los poseedores de sangre del grupo cero negativo (0-) apenas llegan al 7% de la población, pero son cruciales ya que su sangre es compatible con la de cualquier otro grupo sanguíneo, de ahí que se les considere donantes universales.

Los autores consideran que su descubrimiento podría ser una herramienta para tratar los hematíes y aumentar las reservas de sangre universalmente compatible para aliviar la falta de sangre. «La sangre del grupo cero negativo es universalmente compatible porque su estructura de azúcares es compartida por todos los grupos sanguíneos; sin embargo, las existencias pueden ser limitadas, por eso necesitábamos hallar procesos para cambiar la sangre de los grupos A y B por sangre del grupo 0», subraya el estudio.

El primer estudio para convertir la sangre se publicó hace más de 40 años en Science, cuando científicos de Nueva York aplicaron una enzima procedente de los granos de café para convertir los glóbulos del grupo B en O. Sin embargo, hubo que esperar hasta 2007 para que un equipo internacional ?en el que estaba uno de los científicos del trabajo actual? encontrara una enzima que también podía convertir correctamente el grupo sanguíneo A de los glóbulos rojos. 

De hecho, los expertos localizaron dos nuevas familias de enzimas, una de las cuales convertía el A y la otra el B. No obstante, a pesar de la ausencia prácticamente total de A y B en estas células convertidas, las pruebas cruzadas (los test de laboratorio que se realizan previamente a la transfusión) seguían siendo reactivas, por lo que esta podría ser peligrosa.  

Otro artículo en Nature Microbiology en 2019 encontró dos enzimas más eficientes que, cuando se combinaban, podían convertir A en O, aunque no se publicaron pruebas cruzadas. Se se tardó 17 años en descubrir que la razón por la que la sangre convertida no funciona como grupo sanguíneo O natural se debe a extensiones desconocidas de carbohidratos de los antígenos A y B.

Una vez que los especialistas se dieron cuenta de esto, comenzaron a colaborar entre la institución danesa y sueca para identificar enzimas que también pudieran tratar con los antígenos extendidos. Sus hallazgos son los que se publican ahora. «Hemos aprovechado la adaptación evolutiva de la bacteria A. muciniphila para descubrir enzimas excepcionalmente eficaces«, explica a la agencia de noticias científicas SINC Maher Abou Hachem, investigador de la Universidad Técnica de Dinamarca y autor principal del estudio.

Los glóbulos rojos llevan en su superficie cadenas de azúcares, denominadas glicanos. Estos glicanos varían de una persona a otra y sus diferentes formas se conocen como grupos sanguíneos A, B y O. La compatibilidad de los grupos sanguíneos es esencial durante las transfusiones de sangre, ya que el sistema inmunitario puede reaccionar ante células sanguíneas no compatibles y provocar reacciones potencialmente mortales.

La sangre del grupo O es universalmente compatible porque su estructura de azúcares es compartida por todos los grupos sanguíneos; sin embargo, las existencias pueden ser limitadas. De ahí que sean necesarias estrategias para cambiar la sangre de los grupos A y B por sangre del grupo O.

El equipo analizó bioquímicamente las enzimas producidas y utilizadas por A. muciniphila para degradar los glicanos e identificó una combinación de enzimas estructuralmente únicas que convertían eficazmente los hematíes de los grupos A y B en hematíes del grupo O.

Estas enzimas también eran eficaces contra las versiones ampliadas de A y B descubiertas recientemente y disminuían las reacciones de discordancia en las pruebas, en particular para la conversión del grupo B. 

«Hay escasez del grupo sanguíneo O debido a su consumo excesivo en emergencias, cuando es imposible determinar el grupo sanguíneo o para transfusiones neonatales y fetales. Por lo tanto, existe un desequilibrio entre la oferta y la demanda de esta sangre donada», indica  Martin L. Olsson, profesor en la Universidad de Lund y segundo autor principal.